Patterns of Specialization and (Un)conditional Convergence: The Cases of Brazil, China and India

Marine Hadengue

Ph.D Student, Department of Mathematics and Industrial Engineering, Polytechnique Montreal (Canada)

Thierry Warin¹

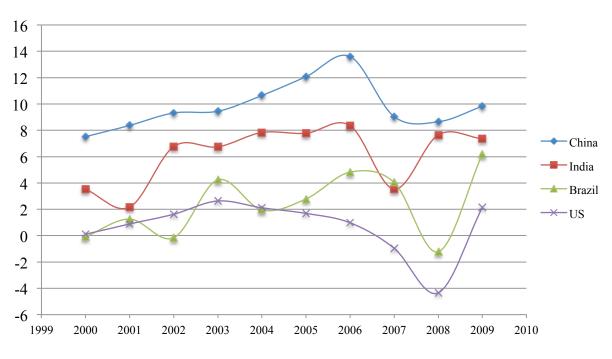
Associate professor, Department of Mathematics and Industrial Engineering, Polytechnique Montreal (Canada)

Vice-President at Cirano (Canada)

Abstract:

The purpose of this paper is to highlight the Balassa-Samuelson effect for emerging countries with new data. More than the catching-up effect, we will measure the convergence for three emerging countries: Brazil/China/India. We will compare the convergence between these countries and the productivity frontier represented by the US over the pas ten years. A first contribution is that as the distance between the level of labor productivity in Brazil (China, India) and the United States decreased, the growth rate of labor productivity within the country decreases. In other words, the higher the level of productivity frontier. A second contribution is that there is unconditional convergence as measured at the industry level.

JEL Classification: O40, O41, O43, O47, O53 Keywords: economic convergence, endogenous growth, China, India, labor productivity

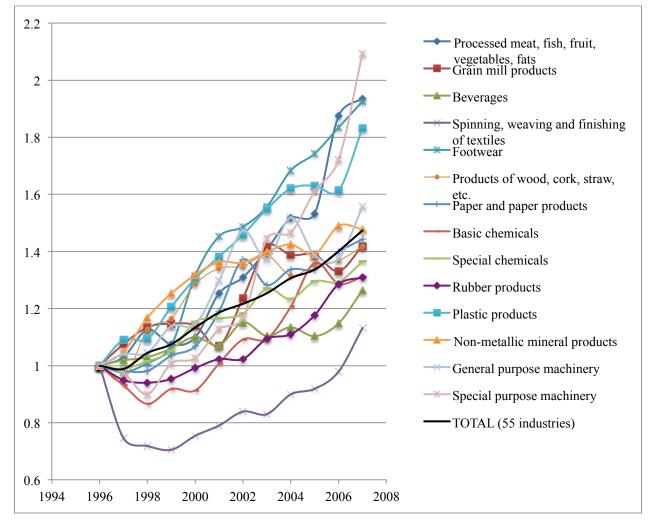

¹ Corresponding author: thierry.warin@polymtl.ca. We would like to thank Cirano and the GMT Lab (Polytechnique Montreal) for their support. Our thanks go to the participants of the IFBAE conference in Tours, the usual caveats apply.

1 Introduction

Emerging and developing countries represent roughly half of the world GDP and are the main contributors to the bulk of world growth (Builter & Rahbari, 2011). This paper aims at revisiting the models of growth and more specifically the convergence of growth between emerging and developed countries. In the midst of a globalisation of the value chains, measuring the world based on data, whose geographical scope is political, does not help capture the new world economic reality. This is why we need to work on the right data to collect as well as use the right methodology to understand these data. The present does not pretend to provide all the answers, but our aim is to be part of this conversation.

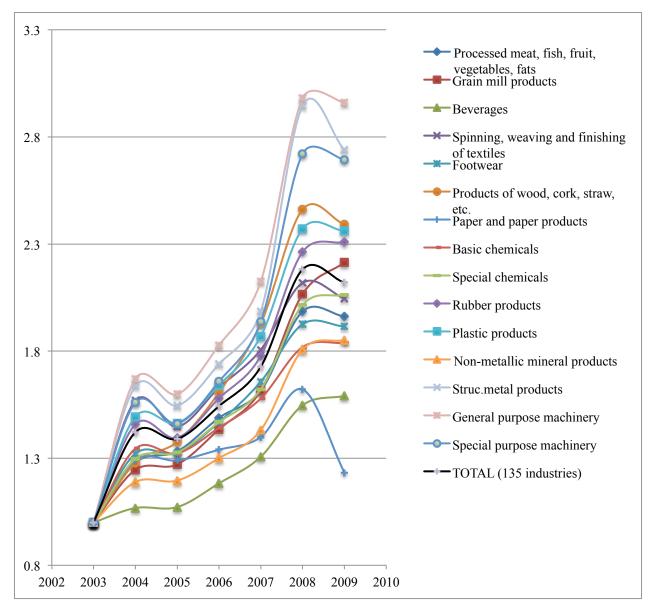
The goal of this paper is twofold: (1) based on a large dataset built around industrial sectors in each country (China, India, Brazil, USA), we study the notion of convergence based on a pooled approach at the industry level first, and (2) we study the convergence at some industry level. Clearly, this work does not intend to be exhaustive, indeed the limitations we have with the data prevent us from being too definitive. Nevertheless, we hope that the approach we design here lays out the path for further interesting research.

The current study focuses on Brazil, China and India. In 2010, populations of these three countries represented more than 45% of the world population.² According to Builter and Rahbari (2011), China will even become the largest economy in the world by 2030 and will itself be second to India by 2050. The following graph (Figure 1) gives us some interesting information about the economic evolution of Brazil, China and India in the past two decades.

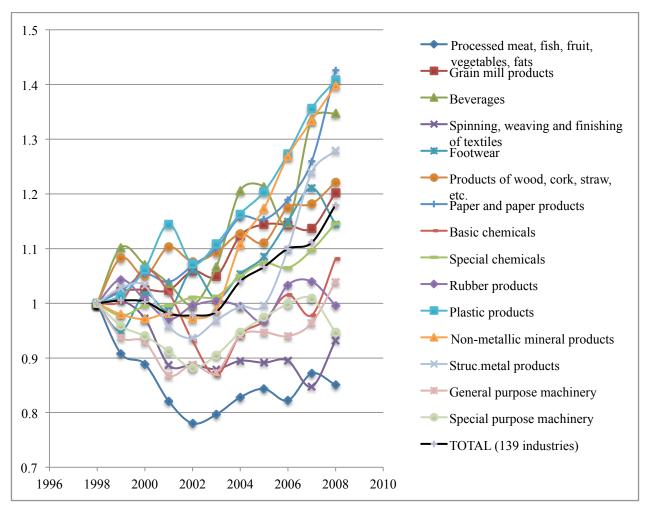

Source: Author's calculations using World Bank 2011 data

Before the crisis, the high annual growth of Brazil, China and India compared to the United States (which is even negative between 2007 and 2009) is already an indicator of convergence between these emerging economies and the U.S. economy. Brazil, China and India are very interesting case studies in this regard. But instead of looking at this convergence at the aggregate level, our study relies on a more micro level approach. Indeed, industrial firms play an important role in emergent countries. Exports have drastically

² According to autor's calculation from World Bank data.


increased over the years to levels of 24%, 30% and 25% of the GDP in Brazil, China and India in 2011 (compared for example to 12% in the U.S.). And what is more interesting than overall convergence is to look at which industrial sectors are actually converging.

As the manufacturing sector accounts for respectively 60%, 93% and 64% of Brazilian, Chinese and Indian exports in 2010 (World Bank, 2010), we should look more closely at the evolution of this sector. Despite a slowdown, the number of manufacturing establishments in China has tripled in less than 10 years. Brazil has also experienced an important increase of every industry in general. India's manufacturing sector has stayed stable or increased too. In comparison with the U.S., we observe that almost every sector has experienced a slowdown (except for beverages, non-metallic mineral products and structure metal products), although the global industry sector has slightly increased. Unfortunately, we do not have the data from 2006 onwards for the U.S. However we can assume that the economic crisis has not helped and that the number of establishments has continued to fall at least until 2009. This big picture shows that the advantage goes to Brazil, China and India.


Figures 2 - Normalized evolution of the number of establishments in the manufacturing sector for major industry types in Brazil.

Source: UNIDO database, 2011

Figures 3 - Normalized evolution of the number of establishments in the manufacturing sector for major industry types in China.

Source: UNIDO database, 2011

Figures 4 - Normalized evolution of the number of establishments in the manufacturing sector for major industry types in India.

Source: UNIDO database, 2011

In this regard, it might be very interesting to look at the evolution of labor productivity in these countries. Indeed, considering their active population and the recent fast-pace development of the manufacturing sector, we assume that these emerging countries may start having important absolute comparative advantages. Moreover, it is important to emphasize that the size of their own population provides them with a huge domestic market. Independently of any other control variable (political measures, economic measures etc.), we could eventually find unconditional convergence for these two countries.

It is in this context that this paper tests whether the convergence hypothesis can be validated for these three countries. We will try to identify labor productivity convergence in the manufacturing sector between these countries and the United States. This type of convergence is different from the well-known β -convergence, which checks convergence of an entire country or region. It is also different from the σ -convergence, which is particularly interested in the shape of the variance in growth rate. For the sake of a name and clarity, we modestly decided to name it: δ -convergence. The choice of the U.S. as the country of reference is not a coincidence, as it remains up to four times the more productive country at the

manufacturing level before Germany or France in the main sectors.³ In what follows, we present a brief literature review on the types of convergence. Then the data and models are described in section 3. In section 4, these models are tested (for all industries and by industry) for each country and the results are presented.

2 Literature review

This study is inspired by Rodrik (2011a) who finds unconditional convergence measured through labor productivity in manufacturing (detailed by type of industry according to the Industrial Statistics Database at the 4 - digit level) over ten years for a total of forty countries. The results are interesting insofar as they oppose the conclusions of recent works on convergence. Indeed, if unconditional convergence was verified for all sectors, then developing countries should have almost caught up with developed countries in terms of labor productivity. Moreover, according to the factor price equalization theorem, ratios of wages over cost of capital in developing countries should evolve towards ratios of wages over cost of capital in developed countries. If two countries met the conditions of the H-O model⁴ and their inputs do not differ "too much", then the free exchange of goods leads to an equalization of factor prices even if "there is no mobility of these factors" (Mundell, 1957; Samuelson, 1948). In other words, since international trade leads to the equalization of ratios of final goods prices between countries, then the factors prices (including wages) should also be adjusted. However, some new theories of international trade came to change the assumptions of the old traditional models. The configuration of international trade, the diffusion of ideas, the elimination of duplication in research were also studied in the literature (Aghion & Howitt, 1992, Grossman & Helpman, 1990, Rivera-Batiz & Romer, 1991, Segerstrom, Anant, and Dinopoulos, 1990). These phenomena have an impact on the production factors. Moreover, the factor price equalization theorem has been questioned in the literature (Leamer & Levinsohn, 1994; Repetto & Ventura, 1997; L. Rivera-Batiz & Oliva, 2003; Trefler, 1995) and unconditional convergence of labor productivity does not automatically imply a convergence of the global economy, which has been widely validated empirically in the literature (Rodrik, 2011a).

This paper is part of this literature on economic growth and most particularly on labor productivity convergence. An important part of the economic growth literature is dedicated to the convergence concept. Convergence is defined in two ways: (1) when countries (or regions) converge to a steady state, which is the same for all. (2) But it can also be if countries (or regions) are considered to converge each to their own steady state (Barro & Sala-i-Martin, 2004). Generally, convergence is measured through per capita income (GDP per capita) or labor productivity. It can be conditional or unconditional.

In the case of **unconditional** β -convergence, there is a correlation between growth and the initial value, and this, without adding control variables in the following regression:

$$\hat{\mathbf{y}}_{\mathrm{T}} = \alpha_0 + \beta \times \mathbf{y}_0 + \varepsilon \tag{1}$$

 \hat{y}_T is the annual growth rate and the initial value is y_0 (initial income, or the distance between the income of rich and poor countries). The coefficient of interest β has a negative value. The first work on the subject was done by Baumol (1986) and covers a sample of 16 OECD countries. In the case of **conditional** β -convergence, Pritchett (1997) shows that while rapid gains in productivity are possible, this is not what is observed empirically. Since the industrial revolution, developing countries have had an experience of divergence rather than convergence with rich countries (Pritchett, 1997). The β -convergence then becomes conditional:

³ According to Author's calculation and using UNIDO data : the productivity is obtained by dividing each sector added value by the number of employees at the time.

⁴ For more details on the hypothesis, see (Mundell, 1957; Ohlin, 1933; Rybczynski, 1955; Samuelson, 1948, 1949)

$$\hat{\mathbf{y}}_{\mathrm{T}} = \alpha_0 + \beta \times \mathbf{y}_0 + \gamma' \times \boldsymbol{\Phi} + \boldsymbol{\varepsilon}$$
⁽²⁾

with Φ a vector of control variables such as, for example, human capital, savings rate, population growth, technology or the rate of capital depreciation. All this literature is of course linked with the neoclassical growth model from Solow (1956), which implies that countries with similar production functions at a given time should see their incomes converge to their steady state through time. In short, it is conditional convergence (Mankiw G., Phelps, & Romer, 1995). The growth rate is regressed on the initial income with other control variables determining the steady state (variables in the vector Φ of equation 2). In the case of σ -convergence, it emerges in response to criticisms (Friedman, 1992; Quah, 1993) who consider that a negative value of the coefficient is not sufficient to prove convergence and an assessment of the standard deviation of the distribution of the dependent variable (growth rate of per capita income or productivity) in cross section is required to validate the hypothesis (Islam, 2003). Also according to Islam (2003), the literature about σ -convergence is divided in two branches: (1) one that maintains and tries to explain the relationship between σ and β -convergences and (2) one that emphasizes the limitations of the latter. Indeed, σ -convergence has the advantage of indicating whether the distribution of income across economies is becoming more equitable (Friedman, 1992; Quah, 1993).

The debate is far from being over and researchers continue to be interested in the β -convergence since it is still necessary, although not sufficient, for the σ -convergence (Islam, 2003; Andrew Young, Higgins, & Levy, 2005). To our knowledge, there is no work evaluating the δ -convergence. Indeed, rather than focusing on the convergence of income or productivity of an entire country or region compared to a steady state (shared or not), the δ -convergence analyses convergence between the level of labor productivity of the manufacturing industries of a country and the productivity frontier of that industry at time *t* in the world. In the case of δ -convergence, the equilibrium state is associated with the productivity frontier and other variables specific to the national growth model (savings rate, growth population, technology or capital depreciation rate etc...) are not appropriate.

In 1991, Barro studied the β -convergence of income in 98 countries between 1960 and 1985. He finds that the latter is conditional on the initial level of human capital (positive correlation) and government expenditures relative to GDP (negative correlation) (Barro, 1991). Mankiw, Romer and Weil (1992) have studied β -convergence in income between 1960 and 1985 on three different samples of countries (those with a developed oil industry, those for whom data were unreliable and finally the OECD countries) and found unconditional convergence for the OECD countries, and conditional convergence for the two other groups. Barro and Sala-i-Martin focused on 48 States in the U.S. between 1880 and 1988 and found unconditional β-convergence (Barro & Sala-i Martin, 1992). More recently, Dawson and Sen (2007) showed an unconditional β -convergence in income for a sample of 29 countries (selected according to availability of data provided by Maddison) between 1900 and 2001. In response to the work of Barro and Sala-i-Martin (1992), Young, Levy and Higgins (2005) reaffirmed β -convergence and studied the σ convergence across U.S. states. They found a significant σ -divergence in most cases (Andrew Young et al., 2005). In the same vein, Wang (2004) found a discrepancy in income across Chinese provinces between 1991 and 1999, thus questioning the initial results of Choi and Li (2001) who found a conditional β convergence between 1978 and 1994. Kaitila, Alho and Nikula (2007) found unconditional β-convergence of 21 emerging economies of Central Europe and Eastern Europe. Finally in a recent study, Rodrik (2011a) used data from the Penn World Tables Data compiled by Maddison and found β -convergence in income for a very large set of countries between 1990 and 2007 periods by regressing 10 years.

Other authors are more focused on the convergence of productivity including labor productivity. Bernard and Jones (1996) examined the unconditional β -convergence based on productivity for 14 OECD countries between 1970 and 1987. Their main results was a lack of convergence in the manufacturing sector as opposed to unconditional convergence in services. Other authors such as Carree, Klomp and Thurik (1999), working on 18 OECD countries between 1972 and 1992, found that convergence varies greatly by industry. They explained this phenomenon by the existence of substantial differences in knowledge and

capital. However, Landesmann and Stehrer (2000) found an unconditional β -convergence in a sample of 33 countries between 1963 and 1997 for the manufacturing sector. They also showed that it seemed faster for medium and high technologies. Castellacci, and Los Vries (2010) tried to see whether Bernard and Jones (1996)'s conclusions were valid for a larger set of countries. Their sample included 49 countries between 1970 and 2004 for six major industrial sectors. Overall, they confirmed Bernard and Jones' results for a small group of countries. Finally, in a recent study, Rodrik (2011a) found unconditional β convergence in labor productivity at a highly disaggregated level (more than a hundred manufacturing industry category) for a set of 72 countries between 1990 and 2007. Hwang (2007) showed that poor countries actually converge towards rich countries unconditionally for all manufactured goods they produce and export. Indeed, Hwang showed that there was a large force of "vertical" convergence: the countries furthest from the technological frontier were those who showdc the greatest unconditional economic growth (Hwang, 2007). Levchenko and Zhang (2011) assessed the trend in productivity in 19 manufacturing sectors from 1960 to 2000 and showdc that there was some convergence across countries: the areas farthest from the technological frontier were those who saw their productivity grow the fastest (Levchenko & Zhang, 2011). At the regional level, Jefferson Rawski and Zhang (2008) studied β convergence among Chinese provinces based on productivity (of labor, capital and multifactor) at the industry level between 1998 and 2005. They found unconditional convergence. Similarly, Marti, and Fernandez Puertas (2011) studied the β and σ -convergences in labor productivity of industrial sectors in the Chinese provinces and found that they were weak. For India, works on convergence were made including the σ and β -convergence of regional growth in agriculture between 1971 and 2007 (Somasekharan, Prasad, & Roy, 2011) and the growth of services (services per capita) between 1980 and 2006 (Shingal, 2010). The results are respectively a divergence in agriculture and convergence in services. Several econometric issues were also raised in the literature of convergence with a panel based approach. From a methodological perspective, Islam (2003) concluded that the inclusion of least squares with dummies (LSDV), the minimum distance estimator of Chamberlain (MD) and GMM estimators are among the most reasonable estimators for such models, unless the time frame was not long enough.

3 Model

The data used in this paper are from the United Nations Industrial Development Organization (INDSTAT4 ISIC Rev.3). For non-OECD members, they were collected from national statistical offices of UNIDO. The database provides the value added (in current U.S. dollars) and the number of employees for 151 manufacturing industries in 127 countries between 1990 and 2008 for the most part. In this paper, we use the data for Brazil, China, India and the United States. The data are available respectively between 1997 and 2007, 2003 and 2007, 1998 and 2007 and 1997 and 2007. The data cover respectively 55, 135 and 139 out of the 151 industries for Brazil, China and India. Annual labor productivity is calculated by dividing the value added by the number of employees for each industry and each year. To measure this productivity in real terms, we deflate values by using the consumer price index. Different models are used in the literature to assess the convergence of labor productivity. Some authors regress the growth rate of labor productivity on the initial labor productivity between a country and the leading country - on the growth rate of the difference in labor productivity between a country.

In our case, data for the labor productivity frontier are the United States's. Indeed, the U.S. remains the most productive in manufacturing according to UNIDO. We will regress the growth rate (biannual) of labor productivity on the ratio of the distance between the labor productivity of industry *i* at time *t* and the data in the same industry *i* at time *t* in the U.S. The δ -convergence model is specified as follows:

$$\hat{\mathbf{y}}_{it} = \beta_0 + \beta_1 \times RATIO_{it} + \mathcal{E}_{it} \tag{3}$$

 \hat{y}_{it} is the absolute growth of labor productivity between time *t* and time *t*⁺² and *RATIO*[#] the distance to the labor productivity frontier for industry *i* at time *t*.

$$\hat{y}_{it} = \frac{v_{it+2}}{v_{it}} \quad \text{with} \quad v_{it} = \frac{Added \, Value_{it}}{Number \, of \, Employees_{it}}$$

$$RATIO_{it} = \frac{y_{it}}{y_{it}^{US}}$$

This functional forms can be tested to approximate the trend:

$$\log\left(\hat{\mathbf{y}}_{it}\right) = \beta_0 + \beta_1 \log(RATIO_{it}) + \mathcal{E}_{it} \tag{4}$$

To check the convergence hypothesis, β_i should be significant and negative: the growth rate of labor productivity decreases as the distance to the productivity frontier decreases (and thus increases the variable *RATIO*).

The logarithmic form implies that although there is a positive correlation between the growth rate and a long distance to the productivity frontier, the magnitude of this relationship diminishes as the frontier expands (Equation 4).

Regarding the estimator, the ordinary least squares (OLS) could not be optimal for evaluating this type of data. Indeed, it seems reasonable to assume that there is a positive correlation between distance and the error term, which includes unobserved variables specific to each industry (Ci). These variables might be positively correlated with the regressor, which automatically induces a positive bias on β_i . Since the expected sign of β_i is negative, then the value estimated by OLS will tend to be less negative than it could be, which will minimize the estimated convergence. Formerly:

$$E(\mathcal{E}_{it}|RATIO_{it}, C_i) = 0 \tag{7}$$

Hence:

$$\hat{\mathbf{y}}_{it} = \beta_0 + \beta_1 \times \text{RATIO}_{it} + C_i + V_{it} \tag{8}$$

with:

$$Corr\left(RATIO_{it}, \mathcal{E}_{it}\right) \neq 0 \tag{9}$$

A Hausman test was performed showing that a fixed effects model is superior to a random effects model, which is consistent with the literature (Islam, 2003; G. Mankiw et al., 1995). Therefore we will use the fixed effects method (LSDV).

To further check for robustness, we used the Beck-Katz, Kmenta-Parks and GMM estimation techniques. Indeed, the presence of serial correlation and panel heteroscedasticity were of key concern in our estimation of this model. If there is autocorrelation, the option would be fourfold: (1) a dynamic panel model (two-way random effect model or error component model) with first differences, sometimes known as a Prais-Winston transformation or a Cochrane-Orcutt transformation; (2) a dynamic model with lagged dependent variables with two slightly different approaches known as one or two step general methods of moments (GMM) estimators as in Arellano and Bond (1991) or Arellano and Bover (1995); (3) a weightadjusted combination of the White and Newey-West estimator to handle both the heteroskedasticity and the autocorrelation in the model; or (4) a feasible generalized least squares procedure (FGLS, or a twostate generalized least squares model) as in Parks (1967) and Kmenta (1997) in which the model assumes an autoregressive error structure of the first order AR(1), along with contemporaneous correlation among cross-sections. Unlike a pooled OLS estimation, the Kmenta-Parks method employed here accounts for heteroskedasticity and serial correlation when present. Our choice of estimation method is not immune to criticism, such as those found in Beck and Katz (1995). One of the main criticisms of the Kmenta-Parks estimates is the possibility of underestimation of standard errors and consequently resulting in an artificially inflated statistical significance. This is why we decided to use both estimators to validate the robustness of our results. Nevertheless, these two estimators should be considered cautiously considering the short time-frame of the dataset. This is why we also used the GMM estimator.

As a consequence, we will focus more on the consistency of the statistical significance across the different methods and the sign of the coefficients than the size of the coefficients. Our aim here is to provide a preliminary set of guidelines to study convergence with this new database more than providing the exact impact in absolute terms.

The second step in our analysis will be to regress by industry by separating them into 10 groups representing the available data.⁵ Thus, we will have used the dataset in two ways and extracted as much information as we could for these two countries. In a couple of years, when the dataset will have a longer time frame, the econometric results will be a little more robust.

4 Results

The results are presented separately for the three countries: Brazil, China and India. We evaluate each of the proposed models (equations 4, 5 and 6). These results allow us to determine whether there has been convergence between these countries and the United States during the last decade in terms of labor productivity for the manufacturing sector. Finally, in a second step, we focus at the industry level to analyze the areas of convergence during this period. Several elements can be identified in light of these estimations.

First, with ordinary least squares, the coefficient is significant for the three countries. However, and as predicted, this method of estimation produces positively biased coefficients, which therefore tend to minimize the convergence phenomenon.

These results are actually very interesting as they highlight unconditional convergence of the labor productivity in the manufacturing sector (by the OLS) and that this convergence relies on conditions/variables proper to each industry type (introduced in the model by the fixed effects dummies). In other words, the difference in the coefficient intensity implies that even if there is a convergence phenomenon independently of the context, this convergence will be more important considering specific attributes from the different industries.

It proves that convergence is even more important if factors - for example technology transfer through learning-by-doing - are taken into account. Indeed, technology transfer could be easier in certain types of manufacturing industries than others.

The associated R^2 are not very high. It may be considered as reasonable insofar as the only variable RATIO is not expected to fully explain the variation in growth rate of labor productivity. Standard deviations are reasonable, especially since they are corrected for heteroscedasticity.

Finally, it is possible to remark that the convergence phenomenon seems to be faster in India and Brazil than in China.

⁵ See groups in appendix

Table 1- Results for Brazil

				BR	AZIL				
Estimation		OLS	Beck & Katz	Kmenta-Parks	GMM System	OLS	Beck & Katz	Kmenta-Parks	GMM System
Dependant variable: In(yt)			without in	dustry fixed effects			with indu	ustry fixed effects	
Independant variable				-					
	n(RATIOit)	-0.659***	-0.659***	-0.528***	-0.640***	-0.299***	-0.463***	-0.590***	-0.660***
	. ,	(0.0233)	(0.0233)	(0.0244)	(0.0796)	(0.0217)	(0.0939)	(0.0246)	(0.0717)
ndustry fixed effects:		()	()						
	11					-0.00458	-0.00865	0.00142	0.0263
						(0.0330)	(0.0170)	(0.0483)	(0.0834)
	12					0.0152	0.0295*	0.0394	0.0765
						(0.0330)	(0.0164)	(0.0466)	(0.0734)
	13					0.136***	0.179***	0.206***	0.270
						(0.0337)	(0.0397)	(0.0509)	(0.165)
	14					0.0805**	0.114***	0.187***	0.177
						(0.0372)	(0.0376)	(0.0545)	(0.125)
	15					0.0882***	0.117***	0.103**	0.208**
						(0.0319)	(0.0284)	(0.0466)	(0.0917)
	16					0.0679*	0.101***	0.128***	0.146***
						(0.0372)	(0.0306)	(0.0497)	(0.0523)
	17					0.0611*	0.0936***	0.127***	0.176**
						(0.0317)	(0.0295)	(0.0464)	(0.0700)
	18					0.0397	0.0742***	0.107**	0.116
						(0.0376)	(0.0202)	(0.0533)	(0.0799)
	19					0.117***	0.172***	0.212***	0.252***
						(0.0332)	(0.0366)	(0.0475)	(0.0602)
	110								
Constant		-0.435***	-0.435***	-0.365***	-0.397***	-0.290***	-0.408***	-0.515***	-0.571***
		(0.0143)	(0.0143)	(0.0166)	(0.0586)	(0.0332)	(0.0750)	(0.0461)	(0.0700)
N		493	493	493	493	493	493	493	493
Groups		55	55	55	55	55	55	55	55
R-squared		0.647	0.647				0.408		

Standard errors in parentheses

Table 2- Results for China

				Cł	IINA				
Estimation		OLS	Beck & Katz	Kmenta-Parks	GMM System	OLS	Beck & Katz	Kmenta-Parks	GMM System
Dependant variable: In(yt)			without in	dustry fixed effects			with indu	ustry fixed effects	
Independant variable									
ln(RA	TIOit)	-0.192***	-0.0840***	-0.0989***	0.135	-0.106***	-0.101***	-0.107***	0.149
		(0.0466)	(0.0211)	(0.00612)	(0.106)	(0.0214)	(0.0187)	(0.00736)	(0.0973)
ndustry fixed effects:									
	11					0.0552***	0.0302	0.0564***	0.0457
						(0.0208)	(0.0244)	(0.0118)	(0.0343)
	12					0.0501**	0.0232	0.0474***	0.0164
						(0.0223)	(0.0277)	(0.0127)	(0.0375)
	13					0.0559**	0.0300	0.0496***	0.0108
						(0.0221)	(0.0398)	(0.0136)	(0.0411)
	14					0.0378	0.0152	0.0469***	0.0405
						(0.0231)	(0.0324)	(0.0127)	(0.0358)
	15					0.0911***	0.0643**	0.0921***	0.0490
						(0.0205)	(0.0285)	(0.0126)	(0.0354)
	16					0.0761***	0.0505*	0.0746***	0.0379
						(0.0223)	(0.0299)	(0.0125)	(0.0371)
	17					0.00858	-0.0195	-0.00104	-0.0478
						(0.0240)	(0.0191)	(0.0151)	(0.0472)
	18					0.0384	0.0135	0.0560***	0.0257
						(0.0271)	(0.0193)	(0.0138)	(0.0398)
	19					0.0724***	0.0475*	0.0549***	0.0128
						(0.0239)	(0.0259)	(0.0148)	(0.0465)
	110					,	-0.0264	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,
							(0.0320)		
Constant		-0.0772	0.0513*	0.0309***	0.314**	-0.0317	· · · · · /	-0.0365**	0.303**
		(0.0560)	(0.0305)	(0.00822)	(0.126)	(0.0334)		(0.0156)	(0.127)
I		403	403	402	403	403	403	402	403
Groups		135	135	134	135	135	135	134	135
R-squared		0.060					0.121		

Standard errors in parentheses

Table 3- Results for India

				IND	IA				
Estimation		OLS	Beck & Katz	Kmenta-Parks	GMM System	OLS	Beck & Katz	Kmenta-Parks	GMM System
Dependant variable: In(yt)			without in	dustry fixed effects			with indust	ry fixed effects	
Independant variable				•					
-	RATIOit)	-0.864***	-0.232***	-0.282***	-0.689***	-0.183***	-0.303***	-0.375***	-0.764***
	KATIOI()								
		(0.0310)	(0.0847)	(0.0185)	(0.101)	(0.0179)	(0.0915)	(0.0204)	(0.0938)
Industry fixed effects:									
	11					-0.0112	-0.137***	-0.0802***	-0.187*
						(0.0237)	(0.0407)	(0.0231)	(0.102)
	12					0.0157	-0.0755**	-0.00937	0.0287
						(0.0244)	(0.0305)	(0.0204)	(0.0464)
	13					0.0389	-0.0574*	-0.0206	-0.00907
						(0.0241)	(0.0304)	(0.0209)	(0.0867)
	14					0.0290	-0.0566	-0.0161	0.0893
						(0.0254)	(0.0402)	(0.0208)	(0.0939)
	15					0.0612***	-0.0218	0.0313	0.101*
						(0.0223)	(0.0296)	(0.0192)	(0.0599)
	16					0.0890***	0.0109	0.0703***	0.148**
						(0.0238)	(0.0285)	(0.0209)	(0.0590)
	17					0.0827***	0.00982	0.0935***	0.201**
						(0.0260)	(0.0349)	(0.0235)	(0.0817)
	18					0.0746**		0.0688***	0.0973
						(0.0296)		(0.0226)	(0.0607)
	19					0.0861***	0.0108	0.0771***	0.167***
						(0.0260)	(0.0413)	(0.0227)	(0.0583)
	110						-0.0887**	. ,	. ,
	-						(0.0400)		
Constant		-1.146***	-0.285**	-0.352***	-0.914***	-0.263***	-0.336***	-0.493***	-1.058***
-		(0.0423)	(0.115)	(0.0246)	(0.145)	(0.0309)	(0.122)	(0.0318)	(0.132)
N		1100	1100	1100	1100	1100	1100	1100	1100
Groups		139	139	139	139	139	139	139	139
R-squared		0.447	0.116	200	200	200	0.167	200	200

Standard errors in parentheses

Again, the goal of this paper is essentially to lay out a new way of measuring convergence benefitting from the availability of a new database. We can nevertheless conclude about convergence of labor productivity between Brazil/China/India and the United States in the manufacturing sector. In other words, the greater the gap between the level of labor productivity between Brazil, China or India and the United States in an industry, the greater the rate of productivity growth in Brazil, Chinaor India. As the distance between the two levels of productivity decreases, the growth rate decreases.

Visually, the following graph represents the logarithm of the growth rate of labor productivity in Brazil, China and India against the logarithm of the distance to the border (the variable RATIO). Industries therefore appear, at most, three times (for three time are evaluated 2003-2005, 2004-2006 and 2005-2007) in the case of China and six times in the case of Brazil and India (1998 - 2000, 1999-2001, 2000-2002, 2003-2005, 2004-2006, 2005-2007). The negative slope of the straight lines serves to illustrate the results of the previous regressions.

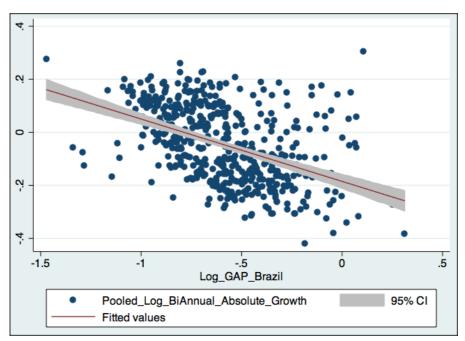


Figure 3 - Growth rate of labor productivity (in log format) in function of the ratio of the labor productivity distance between Brazil and the U.S.

Figure 4 - Growth rate of labor productivity (in log format) in function of the ratio of the labor productivity distance between China and the U.S.

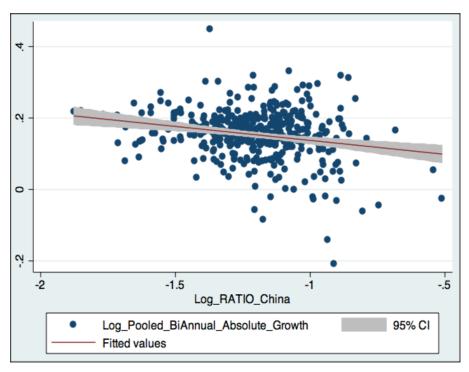
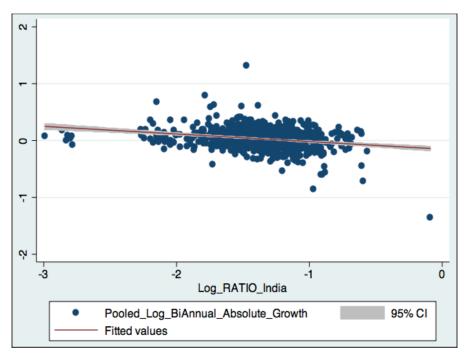



Figure 5 - Growth rate of labor productivity (in log format) in function of the ratio of the labor productivity distance between India and the U.S.

What connection can be made between the convergence of labor productivity and the recent emergence of these countries? As already stated in the introduction, it is important to remember that the manufacturing sector accounts for respectively 60%, 93% and 64% of Brazilian, Chinese and Indian exports in 2010 (World Bank, 2010). These three economies have been largely open to international trade during the last decade, particularly with their entry in the World Trade Organization (1995 for Brazil and India and 2001 for China). The general intuition, often used in the literature is: the opening of the economy generates higher revenues and faster growth if the sectors stimulated generate technological changes and gains through "learning-by-doing" (Young, 1991)⁶. In the case of Brazil, China and India, the manufacturing sector, which represents the majority of exports, may be considered the most stimulated. Obviously, some further research should assess this point.

Now, for our second step, we could analyze the dataset at the industry level. The following tables refer to the regression results for different types of manufacturing industries. Although the small temporal dimension of the data limits the interpretation of these results, they nevertheless provide us with an overview of levels of convergence of the different industries. It is possible to note that almost all industries seem to converge, which is consistent with our previous results. However, the small sample size could also be the cause of this result. For Brazil, except for wood & paper, all industries seem to converge really fast with heavy machinary, transport and textiles in head. For China, the areas of medical equipment, wood & paper and heavy machinary seem to converge faster. In India, we note transport, medical equipment and textiles.

⁶ Other elements as returns to scale, ideas diffusion, elimination of research duplication or enforcement of creative destruction have also been reported by literature as vectors of sustainable growth (Aghion & Howitt, 1992; Grossman & Helpman, 1990; L. A. Rivera-Batiz & Romer, 1991; Segerstrom, Anant, & Dinopoulos, 1990).

Table 2- Log-log, Brazil: OLS estimation by industry

				BRAZIL						
Dependant variable: In(yt)										
	Consommables	Textiles	Wood & Paper	Chimical & Pharmaceutical	Metals and Plastics	Heavy Machinary	Electrical Machines	Medical Equipment	Transport	Others
In(RATIOit)	-0.299***	-0.417***	-0.082	-0.331***	-0.227***	-0.690***	-0.352***	-0.398***	-0.474***	-0.584***
	0.059	0.052	0.067	0.067	0.05	0.063	0.048	0.079	0.089	0.081
Constant	-0.294***	-0.357***	-0.054	-0.227***	-0.161***	-0.440***	-0.258***	-0.313***	-0.251***	-0.513***
	0.044	0.034	0.045	0.042	0.033	0.035	0.03	0.053	0.049	0.065
Ν	54	54	54	27	81	27	90	25	63	18
R-squared	0.37	0.5	0.04	0.32	0.17	0.74	0.33	0.53	0.44	0.73

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3- Log-log, China: OLS estimation by industry

				CHINA						
Dependant variable: In(yt)										
	Consommables	Textiles	Wood & Paper	Chimical & Pharmaceutical	Metals and Plastics	Heavy Machinary	Electrical Machines	Medical Equipment	Transport	Others
In(RATIOit)	-0.120***	-0.094**	-0.184**	-0.131***	-0.015	-0.152***	-0.125	0.196**	-0.136*	-0.060
	0.028	0.041	0.081	0.048	0.032	0.052	0.098	0.071	0.079	0.063
Constant	0.007	0.033	-0.066	-0.029	0.164***	-0.01	-0.043	0.387***	0.008	0.029
	0.036	0.048	0.099	0.073	0.038	0.061	0.114	0.095	0.099	0.088
Ν	63	42	45	33	81	42	30	16	30	21
R-squared	0.27	0.1	0.13	0.21	0	0.14	0.06	0.22	0.08	0.04

Standard errors in parentheses

Table 4- Log-log, India: OLS estimation by industry

				INDIA						
Dependant variable: In(yt)										
	Consommables	Textiles	Wood & Paper	Chimical & Pharmaceutical	Metals and Plastics	Heavy Machinary	Electrical Machines	Medical Equipment	Transport	Others
In(RATIOit)	-0.11***	-0.307***	-0.161*	-0.095**	-0.071	-0.289***	-0.094	-0.424***	-0.743***	-0.426***
	0.032	0.068	0.088	0.038	0.046	0.083	0.059	0.152	0.174	0.115
Constant	-0.154***	-0.417***	-0.193	-0.12**	-0.054	-0.308***	-0.074	-0.488**	-0.872***	-0.583***
	0.056	0.094	0.132	0.054	0.061	0.103	0.074	0.193	0.219	0.156
Ν	173	112	120	88	216	130	80	46	79	56
R-squared	0.07	0.17	0.05	0.08	0.01	0.14	0.02	0.19	0.41	0.31

Standard errors in parentheses

5 Conclusion

At a time when the western world is still struggling with the aftermath of the financial crisis, it is interesting to look at the adjustments operated in the emerging countries. In the past, when the western world would slow down, world demand would cause the emerging countries to slow down as well. It is no longer the case. Demand in the new global players can help sustain their own economy, but moreover, the supply chain is productive enough to keep attracting foreign direct investments. This is probably the time of a paradigm shift.

In this context, the purpose of this paper was to highlight the convergence between Brazil/China/India and the U.S. labor productivity in manufacturing over the past ten years. We tried to make it original in two ways: (1) the study of convergence was done at the industrial sector level and not at a more aggregated level as previous studies. This allowed us to complement these studies by designing a map of which industrial sectors are catching-up with the productivity frontier. (2) We also proposed a new approach to convergence. To the extent that this study is original and differs from the classical studies of convergence, we named it δ -convergence. We tested several different models and estimation methods and found that there was indeed δ -convergence: as the distance between the level of labor productivity in Brazil (or China/India) and the United States decreased, the growth rate of labor productivity within the country, in Brazil, China and India decreases. Also, we showed that there are reasons to be convinced by the unconditional convergence explanation. We recognize that the temporal dimension of our study is its main limitation.

While data availability does not allow deeper investigation currently, this work gives a brief overview of what should be further investigated. Indeed, future studies should concentrate at the industry level in order to understand what are the conditions and the mechanisms required to accelerate the convergence phenomenon and through that, the economic growth. Although study fields of convergence and technology transfer have always been macroeconomic topics, the new globalized world yells for change in our old models and beliefs.

6 Bibliography

Aghion, P., & Howitt, P. (1992). A Model of Growth through Creative Destruction. *Econometrica*, 60(2), 323-51.

Arellano, M., Bond, S. (1991). Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. *Review of Economic Studies* 58,2: 277-297.

Arellano, M., Bover, M. (1995). Another Look at the Instrumental-Variable Estimation of Error-Component Models. *Journal of Econometrics* 68,1: 29-52.

Barro, R. J. (1991). Economic Growth in a Cross Section of Countries. The Quarterly Journal of Economics, 106(2), 407-43.

Barro, R. J., & Sala-i-Martin, X. (1992). Convergence. Journal of Political Economy, 100(2), 223-51.

Barro, R. J., & Sala-i-Martin, X. (2004). Economic growth. MIT Press.

Baumol, W. J. (1986). Productivity Growth, Convergence, and Welfare: What the Long-run Data Show. *American Economic Review*, 76(5), 1072–85.

Beck, N., Katz, J.N. (1995). What to Do (and Not to Do) with Time-Series Cross-Section Data. *American Political Science Review* 89,3: 634-47.

Beck, N., Katz, J.N. (2001). Time-Series-Cross-Section Data: What Have We Learned in the Past Few Years? *Annual Review of Political Science* 4: 271-93.

Bernard, A. B., & Jones, C. I. (1996). Comparing Apples to Oranges: Productivity Convergence and Measurement across Industries and Countries. *American Economic Review*, 86(5), 1216–38.

Builter, W. H., & Rahbari, E. (2011). Global Growth generators: Moving beyond emerging markets and BRICs (No. 55). CEPR Policy Insight.

Byrne, J., & Vecchi, M. (2005). Does Labour Productivity Flow Across Industries?: Estimation Robust to Panel Heterogeneity and Cross Sectional Correlation (NIESR Discussion Paper No. 256). National Institute of Economic and Social Research. Retrieved from http://ideas.repec.org/p/nsr/niesrd/256.html

Carree, M. A., Klomp, L., & Thurik, A. R. (1999). *Productivity Convergence in OECD Manufacturing Industries* (Tinbergen Institute Discussion Paper No. 99-065/3). Tinbergen Institute. Retrieved from http://ideas.repec.org/p/dgr/uvatin/19990065.html

Choi, H., & Li, H. (2001). Economic development and growth convergence in China. Journal of International Trade & Economic Development, 9(1), 37-54.

Dawson, J., & Sen, A. (2007). New evidence on the convergence of international income from a group of 29 countries. *Empirical Economics*, 33(2), 199–230.

Friedman, M. (1992). Do Old Fallacies Ever Die? Journal of Economic Literature, 30(4), 2129-32.

Grossman, G. M., & Helpman, E. (1990). Comparative Advantage and Long-run Growth. American Economic Review, 80(4), 796-815.

Hwang, J. J. (2007). Patterns of Specialization and economic growth. Harvard University, Cambridge, Massachusetts.

Industrial Statistic Database 4 (2012), United Nation Industrial Development Organization.

Islam, N. (2003). What have We Learnt from the Convergence Debate? Journal of Economic Surveys, 17(3), 309–362. doi:10.1111/1467-6419.00197

Jefferson, G., Rawski, T., & Zhang, Y. (2008). Productivity growth and convergence across China's industrial economy. *Journal of Chinese Economic and Business Studies*, 6(2), 121–140.

Kaitila, V., Alho, K. E. O., & Nikula, N. (2007). Growth Prospects of Emerging Market Economies in Europe - How Fast Will They Catch up with the Old West? (Discussion Paper No. 1115). The Research Institute of the Finnish Economy. Retrieved from http://ideas.repec.org/p/rif/dpaper/1115.html

Kmenta, J. (1997). Elements of Econometrics, Michigan: University of Michigan Press.

Landesmann, M., & Stehrer, R. (2000). Potential switchovers in comparative advantage: Patterns of industrial convergence (Economics working paper No. 2000-14). Department of Economics, Johannes Kepler University Linz, Austria. Retrieved from http://ideas.repec.org/p/jku/econwp/2000_14.html

Leamer, E. E., & Levinsohn, J. (1994). *International Trade Theory: The Evidence* (NBER Working Paper No. 4940). National Bureau of Economic Research, Inc. Retrieved from http://ideas.repec.org/p/nbr/nberwo/4940.html

Levchenko, A. A., & Zhang, J. (2011). The Evolution of Comparative Advantage: Measurement and Welfare Implications. *National Bureau of Economic Research Working Paper Series, No. 16806.* Retrieved from http://www.nber.org/papers/w16806

Mankiw, G., Phelps, E., & Romer, P. (1995). The Growth of Nations. Brookings Papers on Economic Activity, 1995(1), 275-326.

Mankiw, N. G., Romer, D., & Weil, D. N. (1992). A Contribution to the Empirics of Economic Growth. *The Quarterly Journal of Economics*, 107(2), 407-37.

Martí, L., Puertas, R., & Fernández, J. I. (2011). Industrial productivity and convergence in Chinese regions: The effects of entering the world trade organisation. *Journal of Asian Economics*, 22(2), 128–141.

Mundell, R. A. (1957). International Trade and Factor Mobility. *The American Economic Review*, 47(3), 321–335.

Ohlin, B. G. (1933). Interregional and international trade. Harvard University Press.

Parks, R. W. (1967). Efficient Estimation of a System of Regression Equation When Disturbances are Both Serially and Contemporaneously Correlated. *Journal of the American Statistical Association* 62,318: 500-509.

Pritchett, L. (1997). Divergence, Big Time. Journal of Economic Perspectives, Journal of Economic Perspectives, 11(3), 3-17.

Quah, D. (1993). Empirical cross-section dynamics in economic growth. *European Economic Review*, 37(2-3), 426–434.

Reinhart, C., & Rogoff, K. (2009). *This Time It's Different: Eight Centuries of Financial Folly* (MPRA Paper No. 17452). University Library of Munich, Germany. Retrieved from http://ideas.repec.org/p/pra/mprapa/17452.html

Repetto, A., & Ventura, J. (1997). *The Leontief-Trefler Hypothesis and Factor Price Insensitivity* (Working paper No. 97-13). Massachusetts Institute of Technology (MIT), Department of Economics. Retrieved from http://ideas.repec.org/p/mit/worpap/97-13.html

Rivera-Batiz, L. A., & Romer, P. M. (1991). Economic Integration and Endogenous Growth. *The Quarterly Journal of Economics*, 106(2), 531-555.

Rivera-Batiz, L., & Oliva, M.-A. (2003). International trade: theory, strategies, and evidence. Oxford University Press.

Rodrik, D. (2011a). Unconditional Convergence (NBER Working Paper No. 17546). National Bureau of Economic Research, Inc. Retrieved from http://ideas.repec.org/p/nbr/nberwo/17546.html

Rodrik, D. (2011b). *The Future of Economic Convergence* (NBER Working Paper No. 17400). National Bureau of Economic Research, Inc. Retrieved from http://ideas.repec.org/p/nbr/nberwo/17400.html

Rybczynski, T. M. (1955). Factor Endowment and Relative Commodity Prices. *Economica*, New Series, 22(88), 336–341. doi:10.2307/2551188

Samuelson, P. A. (1948). International Trade and the Equalisation of Factor Prices. *The Economic Journal*, 58(230), 163-184. doi:10.2307/2225933

Samuelson, P. A. (1949). International Factor-Price Equalisation Once Again. *The Economic Journal*, 59(234), 181–197. doi:10.2307/2226683

Segerstrom, P. S., Anant, T. C. A., & Dinopoulos, E. (1990). A Schumpeterian Model of the Product Life Cycle. *American Economic Review*, 80(5), 1077–91.

Shingal, A. (2010). Services growth and convergence: Getting India's states together (MPRA Paper No. 32813). University Library of Munich, Germany. Retrieved from http://ideas.repec.org/p/pra/mprapa/32813.html

Solow, R. (1956). A Contribution to the Theory of Economic Growth. The Quarterly Journal of Economics, 70(1), 65–94.

Somasekharan, J., Prasad, S., & Roy, V. P. N. (2011). Convergence Hypothesis: Some Dynamics and Explanations of Agricultural Growth across Indian States. *Agricultural Economics Research Review*, 24(2). Retrieved from http://ideas.repec.org/a/ags/aerrae/118228.html

Trefler, D. (1995). The Case of the Missing Trade and Other Mysteries. *American Economic Review*, 85(5), 1029-46.

Vries, G. J. de, Los, B., & Castellacci, F. (2010). Sectoral Productivity Trends:Convergence Islands in Oceans of Divergence (GGDC Research Memorandum No. GD-118). Groningen Growth and Development Centre, University of Groningen. Retrieved from http://ideas.repec.org/p/dgr/rugggd/gd-118.html

Wang, Z. (2004). Regional Divergence of per capita GDP in China: 1991-99. Journal of Chinese Economic and Business Studies, 2(1), 39-53.

Young, Andrew, Higgins, M., & Levy, D. (2005). Sigma-Convergence Versus Beta-Convergence: Evidence from U.S. County-Level Data (Macroeconomics No. 0505008). EconWPA. Retrieved from http://ideas.repec.org/p/wpa/wuwpma/0505008.html

Young, Alwyn. (1991). Learning by Doing and the Dynamic Effects of International Trade. The Quarterly Journal of Economics, 106(2), 369-405. doi:10.2307/2937942

7 Appendix

Industry groups

	151 Processed meat, fish, fruit, vegetables, fats
	1511 Processing/preserving of meat
	1512 Processing/preserving of fish
	1513 Processing/preserving of fruit & vegetables
	1514 Vegetable and animal oils and fats
	1520 Dairy products
	153 Grain mill products; starches; animal feeds
	1531 Grain mill products
	1532 Starches and starch products
	1533 Prepared animal feeds
I1= Consumables	154 Other food products
11- Consumables	1541 Bakery products
	1542 Sugar
	1543 Cocoa, chocolate and sugar confectionery
	1544 Macaroni, noodles & similar products
	1549 Other food products n.e.c.
	155 Beverages
	1551 Distilling, rectifying & blending of spirits
	1552 Wines
	1553 Malt liquors and malt
	1554 Soft drinks; mineral waters
	1600 Tobacco products
	171 Spinning, weaving and finishing of textiles
	1711 Textile fibre preparation; textile weaving
	1712 Finishing of textiles
	172 Other textiles
	1721 Made-up textile articles, except apparel
	1722 Carpets and rugs
	1723 Cordage, rope, twine and netting
I2= Textiles	1729 Other textiles n.e.c.
	1730 Knitted and crocheted fabrics and articles
	1810 Wearing apparel, except fur apparel
	1820 Dressing & dyeing of fur; processing of fur
	191 Tanning, dressing and processing of leather
	1911 Tanning and dressing of leather
	1912 Luggage, handbags, etc.; saddler & harness
	1920 Footwear
<u> </u>	2010 Sawmilling and planning of wood
	202 Products of wood, cork, straw, etc.
	2021 Veneer sheets, plywood, particle board, etc.
	2022 Builders' carpentry and joinery
	2022 Bunder's carpentry and joinery
	2029 Other wood products; articles of cork/straw
	210 Paper and paper products
	210 Paper and paper bloddets 2101 Pulp, paper and paperboard
I3=Wood and paper	
	2102 Corrugated paper and paperboard 2109 Other articles of paper and paperboard
	221 Publishing
	2211 Publishing of books and other publications
	2212 Publishing of newspapers, journals, etc.
	2213 Publishing of recorded media
	2219 Other publishing
	222 Printing and related service activities

	2221 Drinting
	2221 Printing
	2222 Service activities related to printing
	2230 Reproduction of recorded media
	241 Basic chemicals
	2411 Basic chemicals, except fertilizers
	2412 Fertilizers and nitrogen compounds
	2413 Plastics in primary forms; synthetic rubber
I4: Chemicals and	242 Other chemicals
pharmaceuticals	2421 Pesticides and other agro-chemical products
pharmaccuticals	2422 Paints, varnishes, printing ink and mastics
	2423 Pharmaceuticals, medicinal chemicals, etc.
	2424 Soap, cleaning & cosmetic preparations
	2429 Other chemical products n.e.c.
	2430 Man-made fibres
	251 Rubber products
	2511 Rubber tyres and tubes
	2519 Other rubber products
	2520 Plastic products
	2610 Glass and glass products
	269 Non-metallic mineral products n.e.c.
	2691 Pottery, china and earthenware
	2692 Refractory ceramic products
	2693 Struct.non-refractory clay; ceramic products
	2694 Cement, lime and plaster
	2695 Articles of concrete, cement and plaster
	2696 Cutting, shaping & finishing of stone
	2699 Other non-metallic mineral products n.e.c.
I5: Metals and	2710 Basic iron and steel
plastics	
	2720 Basic precious and non-ferrous metals
	273 Casting of metals
	2731 Casting of iron and steel
	2732 Casting of non-ferrous metals
	281 Struct.metal products;tanks;steam generators
	2811 Structural metal products
	2812 Tanks, reservoirs and containers of metal
	2813 Steam generators
	289 Other metal products; metal working services
	2891 Metal forging/pressing/stamping/roll-forming
	2892 Treatment & coating of metals
	2893 Cutlery, hand tools and general hardware
	2899 Other fabricated metal products n.e.c.
	291 General purpose machinery
	2911 Engines & turbines (not for transport equipment)
	2912 Pumps, compressors, taps and valves
	2913 Bearings, gears, gearing & driving elements
	2914 Ovens, furnaces and furnace burners
	2915 Lifting and handling equipment
	2919 Other general purpose machinery
I6: Heavy machinery	292 Special purpose machinery
	2921 Agricultural and forestry machinery
	2922 Machine tools
	2923 Machinery for metallurgy
	2923 Machinery for metallurgy 2924 Machinery for mining & construction
	2923 Machinery for metallurgy 2924 Machinery for mining & construction 2925 Food/beverage/tobacco processing machinery
	2923 Machinery for metallurgy 2924 Machinery for mining & construction
	2923 Machinery for metallurgy 2924 Machinery for mining & construction 2925 Food/beverage/tobacco processing machinery

	2930 Domestic appliances n.e.c.
	3000 Office, accounting and computing machinery
	3110 Electric motors, generators and transformers
	3120 Electricity distribution & control apparatus
	3130 Insulated wire and cable
I7: Electrical	3140 Accumulators, primary cells and batteries
machines	3150 Lighting equipment and electric lamps
	3190 Other electrical equipment n.e.c.
	3210 Electronic valves, tubes, etc.
	3220 TV/radio transmitters; line comm. apparatus
	3230 TV and radio receivers and associated goods
	331 Medical, measuring, testing appliances, etc.
	3311 Medical, surgical and orthopaedic equipment
18: Medical	3312 Measuring/testing/navigating appliances,etc.
Equipment	3313 Industrial process control equipment
	3320 Optical instruments & photographic equipment
	3330 Watches and clocks
	3410 Motor vehicles
	3420 Automobile bodies, trailers & semi-trailers
	3430 Parts/accessories for automobiles
	351 Building and repairing of ships and boats
	3511 Building and repairing of ships
19: Transports	3512 Building/repairing of pleasure/sport. boats
171 Transporto	3520 Railway/tramway locomotives & rolling stock
	3530 Aircraft and spacecraft
	359 Transport equipment n.e.c.
	3591 Motorcycles
	3592 Bicycles and invalid carriages
	3599 Other transport equipment n.e.c.
	3610 Furniture
	369 Manufacturing n.e.c.
	3691 Jewellery and related articles
14.0 01	3692 Musical instruments
I10: Others	3693 Sports goods
	3694 Games and toys
	3699 Other manufacturing n.e.c.
	3710 Recycling of metal waste and scrap
	3720 Recycling of non-metal waste and scrap